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Abstract

This paper is intended to provide an accurate analytical solution to the 1D differential equations modelling cyclic steady heat transfer
processes in rapidly switched heat regenerators for any value of the flush ratio. The temperature solution for the fluid is initially given in
an integral form along the path of a gas particle as a function of the matrix temperature for different space and time intervals. In par-
ticular, as a Lagrange system of reference is assumed, the above solution deals separately with gas particles of three possible types (‘cold’,
‘hot’ and ‘internal’) according to Organ’s concept of independent flow regimes. Also, it accounts for the possible superposition of the so-
called hot and cold zones of the regenerative matrix depending on the value of the flush ratio. Then, assuming a linear distribution for the
matrix temperature, the fluid temperature may analytically be calculated. A closed-form expression for the regenerator effectiveness as a
function of NTU and flush ratio is given. It provides a simple but accurate tool to estimate the regenerator effectiveness in rapid cyclic

flow situations and the deriving results indicate that it is underestimated by the conventional regenerator theory.

© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Heat regenerators are thermal energy storage devices
where the processes of heat storage and heat retrieval are
cyclically repeated and the hot and cold fluids usually flow
in opposite directions (counterflow operation). Their per-
formance during the cyclic steady operation depends on
three dimensionless variables, for instance, N1y, U and a.
The number of transfer units Nty and the utilization factor
U were first introduced by Hausen [1,2, chapter 35]. The
former is defined as the heat transfer coefficient — surface
area of matrix product to the heat capacity flow rate of
the gas (for instance, it was denoted by Hausen reduced
length A). The latter specifies the ratio of the thermal
capacity of the gas per pass to that of the matrix. (Actually

" Corresponding author. Tel.: +39 0862 434326; fax: +39 0862 434303.
E-mail addresses: demonte@ing.univaq.it (F. de Monte), p.rosa@
ing.univaq.it (P. Rosa).

0017-9310/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijheatmasstransfer.2007.10.006

Hausen used the reduced period I, but since U = I1/ A, this
is only a minor change suggested by Johnson [3,4] with the
advantage to not include the heat transfer coefficient.) As
regards the flush ratio o, it was first introduced by Organ
[5,6] and it is defined as the ratio of the time required for
a gas particle to complete a regenerator traverse to the
duration of a period, namely the ‘blow’ or ‘reverse’ periods.
(As a matter of fact, it was formerly denoted N and
defined as Ngp = o ') It accounts for the flush phase, i.e.
the fact that some of the working fluid might not pass all
the way through the regenerator but could remain (or be
‘held up’) inside the regenerator. Thus, the utilization fac-
tor may be written as U= (2f)"", where f is the thermal
capacity ratio specifying the heat capacity of a length unit
of the matrix, p,.c,(A4 — Ay), to the heat capacity of a length
unit of the gas, pc,4s.

In the regenerators used in blast and glass melting fur-
naces, in metallurgical and chemical processing industries
(of fixed-bed type) [7,8] as well as in electrical power gener-
ating stations for air preheating, and in gas turbine power
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Nomenclature

A cross-sectional area of the regenerator

Ag cross-sectional area for flow

cp gas heat capacity per unit of volume

cwpy  Mmatrix heat capacity per unit of volume

h heat transfer coefficient

L regenerator length

n nth operation cycle

Nty number of transfer units, ALP/(pc,|u|Ap)

P matrix wetted perimeter

tij initial time for the jth period

t time during the jth period

T,T, fluid and matrix temperatures

u; gas flow velocity during the jth period

U utilization  factor,  pc,|u]Adto/2)/[peil(A —
APL)

X space coordinate (Euler system)

x{t;) law of motion of a gas particle during the jth
period (Lagrange system)
X initial location of a gas particle for the jth period

Greek symbols
o flush ratio, 2L/(|u;|to)
p thermal capacity ratio, ¢,p,(4 — Ap)/(c,pAs)

€ effectiveness

9 dimensionless temperature, (T — Ti)/(T), — Ty)

14 location of the gas particle within the regenera-
tor

T time corresponding to ¢ during the jth period

To duration of an entire operation cycle

Subscripts

b blow period

h hot space

k cold space

j index (b or r)

r reverse period

w matrix

Superscripts

+ dimensionless (7o for time and L for space)

h hot particles

i internal particles

k cold particles

plants (of rotary type) [9,10], the time required for an
element of gas to pass through the regenerator (L/u) is very
short compared to the time of either period (t0/2). These
regenerators are in fact usually very large heat exchangers,
some having spatial dimensions of up to 40 m and having
unidirectional flow periods of many hours. This indicates
that they are ‘slowly switched (o — 0) and their perfor-
mance may be well described by only two dimensionless
variables, namely Nty and U, as done by Hausen. Notice
that the utilization factor U is finite as § — oo in that the
matrices employed in the engineering applications stated
before are usually metallic.

In the regenerators used in Stirling prime movers [11,12],
coolers [13], heat pumps [14] and cryo-coolers [15-17] (of
fixed-bed type), the time required for a gas particle to pass
through the regenerator is however approximately equal to
the blow time (or reverse time). These regenerators are in
fact considered large if their diameter exceeds 6 cm and
unidirectional flow periods are more likely to be in the mil-
lisecond range. This indicates that they are ‘rapidly
switched (o« = finite) and the effects of the flush phase have
to be taken into account. Their performance may hence be
well described by only two dimensionless variables, namely
Nty and o, in that the utilization factor U approaches zero
(as § > o0), unless the matrix used in the heat regenerators
is not metallic (f = finite). In such a case, in fact, only using
all of the three dimensionless variables, namely N1y, U (or
p) and o, ensures an appropriate description of their oper-
ation, as done by Organ.

A full treatment of the ‘rapidly switched regenerator
problem’ was further developed by Organ in a very author-
itative book [18] running to 623 pages and looking back
over almost 200 years. This treatment is based on a
Lagrangian formulation and analyzes both transient and
cyclic steady operations indicating that the ‘regenerator
problem’ is essentially an extension of the well-known con-
jugate heat exchange problem [19]. The concept of natural
coordinates [20] allows the real particle trajectories of the
gas to be computed and, hence, the mixed Lagrange—Euler
integration grid to be appropriately established. The phys-
ical picture of regenerator operation accounts for flow fric-
tion, space and time variable particle speed and heat
transfer coefficient as well as cyclic temperature fluctua-
tions of the matrix and variations in pressure with time
and location [5,6,19,21]. The governing equations are
numerically solved and charts of the effectiveness are given
in Refs. [6,18, chapter 7].

On the other hand, Organ’s early studies were concern-
ing with the description of the dynamic flow characteristics
of the complete regenerator in terms of a single variable — a
complex admittance [22] — using the methods of linear wave
theory [23]. Contrary to the regenerator thermal solution
described above, where the gas temperature is computed
under prescribed flow and pressure conditions, the wave
methods permit pressure and velocity in function of time
and location to be computed at prescribed temperature.
Therefore, these methods are neither in competition with
the thermal approach nor relevant to it. A first attempt
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to combine the pressure wave and thermal solutions is
given by the same author in his last book concerning Stir-
ling and pulse-tube cryo-coolers [17].

A further numerical thermal solution using a finite dif-
ference method was recently proposed by Ataer [24]. It
accounts for the flush phase proposed by Organ but the
analysis was limited to those few free-piston Stirling
engines of ‘beta’ type (for example, thermo-mechanical
generators [25]) where the circular annulus between the cyl-
inder wall (fixed) and displacer wall (in reciprocating
motion) serves as a regenerator. As regards the analytical
solutions, they are few and far between since the rapidly
switched regenerator problem is generally held to be com-
plex and demanding. An exact analytical solution to the
above problem modelling the complex nature of the oscil-
lating and reversing flow circulations was however given
by de Monte [26] in terms of two dimensionless variables,
namely Nty and o, using a Lagrange formulation for cyclic
steady operation and neglecting matrix temperature oscilla-
tions. Recently, Finkelstein and Organ [27, chapters 11-12],
have considerably simplified formulation of the regenerator
thermal solution dispensing with all of the general cases ini-
tially analyzed by Organ [5,6,18-21], so providing an
approximate expression for the regenerator effectiveness
in the simple form of ¢ = 1 — 1/Nyy which is valid for high
values of Nty and is independent of a.

As the analytical procedure proposed by de Monte [26]
was limited to only small values of the flush ratio (i.e. up to
1), the objective of the present paper is to extend this pro-
cedure to cases characterized by o« > 1. It would indicate
that a slug of fluid oscillates within the matrix without exit-
ing either end. The complexity of the problem and the ‘nat-
ural’ use of the Lagrange system have required (1) to
classify the gas particles as ‘cold’, ‘hot’” and ‘internal’ parti-
cles according to their initial locations and, hence, (2) to
deal separately with these three, independent, flow regimes
separated by temperature discontinuities. In such a way, a
‘segmented’ solution of the regenerator problem is
obtained. In particular, the cold and hot elements of gas
come from the cold and hot spaces adjacent the regenera-
tor, respectively. In the case of a Stirling machine, for
instance, the cold slug of gas enters from the compression
space, the hot one enters from the expansion and the inter-
nal oscillates without leaving the regenerative exchanger.
The above concept of the independent solutions was first
proposed by Organ in Ref. [28], where the thermal perfor-
mance of isothermal heat exchangers of Stirling cycle
machines was studied. A brief description of this notion
is also given in his first book [11, chapter 2].

For that reason, two zones have been characterized
within the matrix, the so-called ‘cold’ and ‘hot’ zones which
may be reached by the cold and hot particles of fluid. For
1 <a < 2 there is a partial superposition of the above two
zones that complicates the treatment in that the ‘superposi-
tion’ zone contains particles of any type. For o > 2, instead,
there is no superposition of the hot and cold zones and there
exists a zone containing only internal elements of fluid.

After proceeding to classify the particles of fluid and the
zones of the matrix, the gas energy equation has analytically
been integrated along the law of motion of any type of gas
particle for both the blow and reverse periods and any value
of the flush ratio. Then, following Organ’s approach [5,6], a
linear temperature distribution for the matrix has been
assumed. It has allowed the fluid temperatures as well as
the regenerator effectiveness to be obtained in a closed-
form. The obtained results have shown that the effectiveness
is underestimated by the classical regenerator theory as it
does not account for the effects of the gas remaining within
the regenerator during the rapidly flow reversals (flush
phase). Also, a comparison with numerical results of
Organ’s model applied to metallic matrices (very high val-
ues of ) has shown an excellent agreement.

2. Mathematical formulation for cyclic operation in
counterflow

The regenerator defining equations represent the transfer
of heat to/from the working fluid and from/to the matrix on
the passage of fluid through the regenerator. They may be
derived from mass, momentum and energy balances con-
cerning an element dx at a location x of the working fluid
and matrix using an Euler formulation (Fig. la). Thus,
for both transient and cyclic operation we have

op 0
LI =0 1
ar TP (1)
g 0 2 op u?
il > op * _ )
at(pu)+ax(pu)+ax+fpp2rh (2)
0 0
Ar 5 (peuT) + Arlpuc,)T) = hP(T, = T) (3)
a wTw
- (4 _Af)% =hP(T,, —T) (4)
a cow HOT
SP;ATC E ulxt) plet), T(oe) T,(x1) SPL\SE
_ . - o
-— —— -
= _ -
-— —— - —
Sy it
-— —— -
= _*C
-——— - —
Sy it
6 x} Lc+dx L } )
DIOW PE O i
-4— — reverse period =—— — —
b ‘9(5**0. r;)fo e =1,27)=1
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o= ./ Internal particles — &' SE’,CA);I:-E
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0 T

Fig. 1. Schematic representation for the analysis of the regenerator. (a)
General scheme; (b) ‘cold’, ‘hot’ and ‘internal’ particles of gas.
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where fg is the Fanning friction factor and p the gas pres-
sure. In the general case, in fact, the gas flowing through a
regenerative matrix may be exposed to significant pressure
and velocity fluctuations. Also, the temperature variation
between the hot and the cold space can be relevant, leading
to temperature-dependent fluid properties. The solution of
Egs. (1)-(4) may be tracked down only by a numerical ap-
proach, as done, for example, by Organ [18]. For that pur-
pose, he considered an adequate integration grid in natural
coordinates and he showed that

1. velocity fluctuations do not cause significant variations
with respect to the constant-velocity case;

2. pressure fluctuations can induce a temperature swing for
the gas at the matrix ends that may have a sensible influ-
ence on the regenerator effectiveness;

3. temperature-dependent properties can affect the gas
thermal field which hence may show marked asymmetry
in the form of convexity towards the higher tempera-
ture. However, as this is not close to the hot matrix
end, the above dependence does not cause significant
variations with respect to the constant-property case.

These findings would indicate that a simplified model-
ling of the regenerator problem may be formulated apart
from the pressure fluctuations, which are negligible in some
applications [7,8] but remain a subject for future research.
In addition, effectiveness charts were given by Organ only
in the simplified case of constant flow velocity and pressure
and of gas properties independent of temperature. Also, no
algebraic expression for the effectiveness as a function of
the flush ratio is available in the regenerator literature.

Then, ignoring longitudinal heat conduction, pressure
and velocity time-variations and assuming that the gas—
matrix heat transfer coefficient is the same everywhere in
the regenerator, the governing equations may be written
for x* €[0,1] and tf € [t;,t; +1/2] in a dimensionless
form as [26]

e gas energy balance

2 00,(x, 1) 00 (x*, 1)

2 o + sign(u) =5
= Nrul[du (", £f) =9, 67)] (j=1b,7) (5)
e matrix energy balance
NTU[79»V(X+7 tj) - 19/-(X+, tj)]
af 00, (x*,t]) )
=TT (j=b) (©)

2 ot/

e cyclic steady operation (the heat released from the
matrix during the flow of the cold gas stream — blow per-
iod — is equal at any location to the heat transferred to
the matrix during the flow of the hot gas stream —
reverse period)

n+1/2
/ [0, (", £5) — 95t )] de;

n

:/" [0, (%, %) — 9, (x+, )] (7)

+1/2

e boundary conditions

(x"=0,¢/) =0 fors €nn+1/2]

8
9,(xt=1,¢")=1 forti e n+1/2,n+1] ®

where

e ‘sign(u;)’ appearing in Eq. (5) takes account of the pos-
sibility of positive and negative u; as the flow direction
alternates. Notice that the space coordinate system
labelled in Fig. 1 considers as positive the gas flow from
the cold end of the regenerator to the hot one, i.e.
Uy =—u,=u>0;

e x" = x/L is the dimensionless abscissa referred to the
regenerator length L;

o M= t/7y is the dimensionless time referred to the dura-
tion of a blow 1y,

o V¥(¥,) = % is the non-dimensional temperature
referred to the temperature jump between the hot and
cold spaces.

For slowly switched heat regenerators (¢ — 0) using a
metallic matrix (f — oo = aff = finite), the partial deriva-
tive 0;/0t] on the left-hand side of Eq. (5) (which repre-
sents the heat storage in the gas) vanishes according to
Hausen’s theory [1]. For rapidly switched heat regenerators
(o = finite) employing a metallic matrix (f — oo), which
are here of interest, Eq. (2) reduces to 619W/6tj+ =0 as
off — oo. This indicates that the matrix temperature at each
location x™ is essentially constant with time and hence the
defining Eqgs. (5) and (7) may be taken as

+ 4t + 4t
RO L) D)

2 otf oxt
= N1ul[d(x") = 0,(x", )] (j=b,r) )
n+1/2 n+1
o) = / 9, £)der + / 9,0, )de (10)
n n+1/2

with the boundary conditions for the fluid temperature al-
ways given by Eq. (4). Thus, the mathematical formulation
leads to the governing equations (8)—(10) whose unknowns
are ¥;(x*, ) (j=b or r) and 9,(x ).

3. General solution of the gas energy equation

As was done in the early paper [26] and following
Organ’s approach [5,6,18] based on a Lagrange frame of
reference, the term on the left-hand side of Eq. (9) is recog-
nized to be the substantial derivative, d/d¢f, of the fluid
temperature. Thus, Eq. (9) becomes
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d 2N
a1+ =0 (). 7]
2Nty

Ol (1)) (11)

where j = b, r and the law of motion of the gas particles in a
dimensionless form is

(1) = &+ Ssign(u) (1] ) (12

Notice that the £" denotes a generic location of an element
of gas within the regenerator (i.e. ¢© €[0,1]) to which cor-
responds a generic time 7. Now, it is interesting to observe
that the integration of the linear first-order differential
equation (11) along the path (12) followed by a selected
gas particle may be performed analytically [29]. Its solution
gives the temperature of an element of gas when it is posi-
tioned at the location £+ and time r;r, that is

TU of—th
ﬁj(éJr?T;—) :19/( 1j7tj]—) (‘/ tl/)
2NTU T‘;r + 4+ M(ﬁfrﬂ +
+ G (8))e = T de (13)

o th
i

where x; = x](¢) is the ‘initial’ location of a gas particle,
that is, the location of a gas particle at the time #; to which
corresponds the beginning of the jth period (blow period or
reverse period) of the nth operation cycle (¢, =»n and
t; = 1/2 + n). It may be evaluated through Eq. (12) simply
setting ¢ =t

xp =&+ —mgn(u/)(t -7) (14)

Now, by means of an algebraic substitution of the dummy
variable in the integral on the RHS of Eq. (13), that is, time
variable ¢ — space variable x" according to the law of
motion (12), after some algebraic steps making use of Eq.
(14), Eq. (13) becomes

+

+ ot st o ﬁxw
V(&7 1) = e g (x], 1 )ee

) ij2 i

Nty

/ 19111 slgn(u dx+‘| ( 1 5)
51gn -

where x;; depends on the time 7 in the form of Eq. (14).
Eq. (15) has the advantage to provide us the fluid temper-
atures in a much more straightforward manner than Eq.
(13). Now, it follows from Eq. (15) that the computation
of the fluid temperature requires

e the knowledge of matrix temperature 9,,. It may be eval-
uated through the cyclic operation condition (10) that,
according to the Lagrange system here assumed, has
to be rewritten as

n+1/2
(&) = / (& )T}

n+1
R (16)

+1/2

As 9, and 9, may be taken through Eq. (15) as a func-
tion of 9,, Eq. (16) becomes an integral equation in
the unknown ¥,,. However, following Organ’s approach
[5,6,18] a uniform gradient for the matrix temperature
has been assumed (Section 7). In particular, we have
used the well-known expression deriving from the
Nusselt classical theory of the regenerators (¢ — 0), i.e.

N 1

+ TU +

w f + 17
W) =y Ty (17)
e the knowledge of ‘initial’” temperature ¥;(x;}, ¢;;) = ¥;; of

the gas particle, that is, the temperature of the gas parti-
cles when the blow and reverse periods start. It depends
on the initial location of the element of gas. When the
blow period starts, for example, the element of gas may
be located inside or outside the regenerator. Similarly,
when the reverse period starts. For this reason, the
boundary conditions (8) are relevant only for the fluid
particles located outside the regenerative matrix.

For o < 1, the initial temperatures of the gas particles
and subsequently the blow and reverse fluid temperatures
have been derived in [26]. For « > 1 (which is of interest
in the current paper), the mathematical treatment is much
more complex because a slug of fluid oscillates within the
matrix without exiting either end. In such a case, to deter-
mine the initial temperatures of the gas particles, it is con-
venient to classify them as cold (k), hot (h) and internal (i)
particles according to their initial locations, as shown in
Fig. 1b. In particular, these locations may be linked to &
and 7/ by using Eq. (14), where the ¢"-range depends on
the value of o and type of particle, as shown in Sections
4-6.

4. ‘Cold’ particles

During the cyclic operation of the regenerator, the ‘cold’
gas particles fluctuate between the cold space and regener-
ator without entering the hot space, as shown in Fig. 1.

4.1. Blow period

At the beginning of the blow period (¢}, = n), the cold
particles are located inside the cold space, i.e. x,.; S
[—(1/o— &%),0]. For o<1, the cold particles can reach
any position ¢ within the regenerator, ie. &' e[0,1].
For o > 1, instead, the cold particles of gas can reach only
those positions having ¢ € [0, 1/a] which define the so-
called ‘cold’ zone of the matrix, as shown in Fig. 2. In both
cases, however, an element of gas starting from the location
xj € [~(1/a— £"),0] reaches the position ¢* at the time
i e€n+Era/2,n+1/2]. In fact, substituting x, =
—(1/o— &) in Eq. (14) for j=b, we have tf =n+ 1/2.
Similarly, setting x;; = 0 in the same equation, we obtain
=n+E&a/2.

Also, it is of great concern to observe that in the first
part of the blow period (¢ € [n,7;"]) there is no heat
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a)a <l
COLD HOT
SPACE SPACE
L. COLD ZONE = HOT ZONE
0 1 &
b)l<a<2
COLD HOT
SPACE SPACE
COLD ZONE
HOT ZONE
SUPERPOSITION ZONE
0 1-1/a. Ve 1 &
c)a>2
COLD HOT
SPACE SPACE
COLD ZONE HOT ZONE
0 1k -1k 1 &

Fig. 2. ‘Cold’ and ‘hot’ zones of the matrix. (a) o<1 (complete
superposition with no internal particles of gas); (b) 1 <a <2 (partial
superposition containing cold, hot and internal elements of gas); and (c)
a>2 (zone & € [1/a,1 — 1/o] containing only the internal particles).

exchanged between the cold elements of gas and the matrix
as these elements are outside the regenerator. (The time t}*
may be evaluated through Eq. (12) simply setting
xf(t{)=0.) This would indicate that the initial time
¢+ = n appearing in Eq. (15) for the blow period (j = b)
has to be replaced by the ‘heat exchange’ initial time i".
Similarly, the initial location x} which appears in Eq.
(15) for j=b has to be replaced by the position
x; (th*) = 0, where the dimensionless temperature is equal
to zero (see Eq. (8.1)). From what it has been said and
bearing in mind Eq. (15), it follows that the temperature
of a cold element of gas at the location ¢ and time t;
may be taken as

05 (ET) = Nyge Mve /0 (e dxt (18)

Notice that the above temperature is independent of ¢*.

4.2. Reverse period

At the beginning of the reverse period (f; =n+1/2),
the cold particles are located inside the regenerator. For
a< 1, xf € [¢7,1] where ¢ €[0,1]. In this case, the gas
particle reaches the position ¢ at the time Tt € [n+
1/2,n+1/2+ (1 —&Na/2]. In fact, setting x =¢" in
Eq. (14) for j =, we have 7 = n + 1/2. Similarly, substi-
tuting x; =1 in the same equation, we obtain the upper
limit of the above time interval. For o> 1, instead,
xt e[, 1/a] where ¢ €[0,1/a] (‘cold” zone of the
matrix). In fact, if this range was not verified, the cold par-
ticles would not enter the cold space and hence they could
not be classified as cold particles. In such a case, the
element of gas reaches the position ¢' at the time
then+1/2,n+1—Ew/2]. In fact, setting x. = 1/a in
Eq. (14) for j = r, we have the upper limit of the above time
interval. From what it has been stated and bearing in mind
Eq. (15), the temperature of a cold element of fluid at the
location &' and time /" may be evaluated as

n+ 1/2)e’NTU)‘:+r

ir?

(e ) = N [w'xx-*

é*
*NTU/ ,ng(x+)e—NTUx+ dxt
xi

(19)

where the initial temperature ¥%(x;,n + 1/2) depends on
the thermal history of the same element during the preced-
ing blow period (; € [n,n + 1/2]), that is, 9*(x};,n + 1/2)

= 9% (xt,n+1/2). Now, the latter temperature may be

obtained by means of Eq. (18) simply setting ¢ =x;.
Thus, Eq. (19) becomes

.
X .
kigt _+\ _ NTué" | a—2NTuxt v N\ NTUxt ot
(&Y, 1) = Nyu eV le / G0t )N T dx
0

i

g“+
- / Fo (" )e N dx+] (20)

where x; depends on the time 7 in the form of Eq. (14) for
j=r.

5. ‘Hot’ particles

When the regenerator works in cyclic operation, the
‘hot” gas particles fluctuate between the regenerator and
hot space without entering the cold space, as shown in
Fig. 1.

5.1. Reverse period

At the beginning of the reverse period (¢; =n+1/2),
the hot particles are located inside the hot space, i.e.
xi € [l,1/oa+ &]. For a < 1, the hot particles can reach
any position ¢ within the regenerator, i.e. &' e[0,1].
For o> 1, instead, these particles of gas can reach only
those positions having ¢ €[l — 1/a,1] which define the
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so-called ‘hot’ zone of the matrix, as shown in Fig. 2. In
both cases, however, a gas particle starting with the loca-
tion x} €[l,1/a+ ¢"] reaches the position &' at
then+1/24 (1 —ENa/2,n+ 1]. In fact, setting x;. = 1
in Eq. (14) for j =r, we have the lower limit of the above
time interval. Similarly, substituting x;. = 1/« + ¢* in the
same equation, we obtain 7} =n 4 1.

Also, it is relevant to note that in the first part of the
reverse period (¢ € [n + 1/2,7""]) there is no heat trans-
ferred between the gas particles and matrix as these parti-
cles are outside the regenerator. (The time "" may be
evaluated through Eq. (12) simply setting x/(#7) = 1.) This
indicates that the initial time 77 = n + 1/2 appearing in Eq.
(15) for the reverse period (j = r) has to be replaced by the
‘heat transfer’ initial time t"*. Similarly, the initial location
x;- has to be replaced by the position x} () = 1, where the
dimensionless temperature is equal to unity (see Eq. (8.2)).
Thus, applying Eq. (15) gives the temperature of a hot ele-
ment of gas at the location ¢ and time 7, as
é+
ﬁf(é*) — eNTUf+ e Ntu — Ntu

1

Oy (x)e Vo dx+]

(1)

Notice that the above temperature is independent of &*.
5.2. Blow period

At the beginning of the blow period (¢}, = n), the hot
particles are located inside the regenerator. For o <1,
x5 € [0, &) where &7 € [0,1]. In this case, the gas particle
reaches the position ¢* at the time t; € [n,n + ¢a/2]. In
fact, setting x; =0 in Eq. (14) for j=b, we have
©) = n+ & a/2. Similarly, substituting x; = ¢" in the same
equation, we get 7, = n. For o> 1, instead, x}; € [l — 1/«,
&) where &e [1 — 1/a,1]. In fact, if this range was not
verified, the hot particles would not enter the hot space
and hence they could not be classified as hot particles. In
such a case, the element of gas reaches the position ¢* at
the time t; € [n,n+ (1 —a)/2+ & a/2]. In fact, setting
xt =1—1/oin Eq. (14) for j = b, we have the upper limit
of the above time interval. From what it has been stated
and applying Eq. (15), the temperature of a hot fluid
element at the location ¢ and time 7 may be evaluated as

(e = e [ﬂ”( o)

et
T w ot
+Ntu / 9, (x")eV v dx*] (22)

ib

where the initial temperature 9} (x;;, ) depends on the ther-
mal history of the same element during the reverse period
at the (n — 1)th operation cycle (¢ € [n — 1/2,n]), that is,
(x5, n) = 9" (x5, n). Now, the latter temperature may be
obtained by means of Eq. (21) simply setting &* = xj}.
Thus, Eq. (22) becomes

h - + 2xh —

+
X
. ib B N
_ NTU eZNTux’,h / ﬂw (x+)e Ntyx dx+
1

&

+NT1y

.
Xib

9, ()M’ dx+] (23)
where x;; depends on the time 7, in the form of Eq. (14) for
j=b.

6. ‘Internal’ particles

During the cyclic operation of the regenerator, the
‘internal’ particles of gas oscillate within the matrix with-
out exiting either end, as shown in Fig. 1. Of course, they
vanish for o <1 and we would have only the cold and
hot particles treated in the previous two sections.

6.1. Blow period

At the beginning of the blow period (¢, = n), the inter-
nal particles are located at x}; € [0,1 — 1/«]. In fact, if this
range was not verified, the internal particles would enter
the hot space and hence they could not be classified as
internal particles. Thus, we have:

e 1 <o <2 In this case, the internal particles, starting
from xj €[0,1 —1/0, can reach both the domains
e e[0,1 — 1/a] and & €1 — 1/a,1/«] where the latter
is given by the superposition of the cold ([0, 1/a]) and
hot ([1 — 1/a,1]) zones of the matrix (see Fig. 2b).
Notice that an internal particle starting from
xp €[N —1/a,1 —1/a] can also reach the domain
ECel/a,1].

e o> 2. In the current case, the internal particles, starting
from xj, € [0,1 — 1/a], can reach both the ¢* € [0,1/«]
and ¢ e[l/a,1 — 1/a] domains where the former is
the cold zone of the matrix (Fig. 2¢). Also, an internal

particle starting from xj €[¢é—1/a,1—1/a] can
reach the domain ¢ €[l — 1/a,1] (hot zone of the
matrix).

Applying Eq. (15) for j = b, the temperature of an internal
element of fluid at the location ¢ and time t; may be eval-
uated as

192(5+7 Tb ) 7.91 (xlb’ n)eNTU(x,J,:*iJr)
5+
+ N1 [ D) At (24)

Xiby

where the initial temperature ¥ (x;;,n) may be calculated
making use of the cyclic operation of the regenerator, that
is

191( Xibs ) 191( Xiph T — 1) (25)
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Now, the temperature on the LHS of the above equation
depends on the thermal history of the same particle during
the reverse period of the (n— 1)th operation cycle
(tF € [n—1/2,n)), ie. 9, (xp,n) =V.(" =x5,tF =n). In
particular, the latter temperature may be derived applying

q. (15) for j=r and #f =n—1/2. Also, it depends on
19’ (x” ,n — 1/2) which is the temperature of the internal par-
ticles at the beginning of the (n — 1)th reverse period with
x; =x;, + 1/a. However, since this temperature may also
be seen as the temperature at the end of the (n — 1)th blow
period (¢ € [ —1,n—1/2]), we can write ¢'.(x;,n — 1/2)
=, (¢" =xf, 1) = n — 1/2) where the second temperature
may be determined by means of Eq. (15) for j— b and
t; =n— 1. Notice also that it depends on ¥} (x};,n — 1)
Wh1ch is the temperature of the internal particles at the
beginning of the (# — 1)th blow period, that is, the temper-
ature on the RHS of Eq. (25). Thus, solving Eq. (25) for
9} (x;;,n), we obtain

x4l
[ et
1 —e 2= £

+eNTU<X%*x*>} dx+} (26)

ﬁl (xzb’ I’l)

where x;; depends on the time 7, in the form of Eq. (14) for
j=b. Itis relevant to note that the time and space intervals
where Eq. (24), along with the companion Eq. (26), may be
used depend strictly on the value of «, as it will be illus-
trated in Section 7.

6.2. Reverse period

At the beginning of the reverse period (£ =n+1/2),
the internal particles are located at x> € [1/o,1]. In fact,
if this range was not verified, the internal particles would
enter the cold space and hence they could not be classified
as internal particles. Therefore, we have:

e 1 <a <2 In this case, the internal particles startmg
from x; € [1/o, 1] can reach both the domains ¢ € [1/
a,17and " €1 — 1/a, 1/a] where the latter is given by
the superposition of the cold ([0, 1/a]) and hot ([1 — 1/
o,1]) zones of the matrix (see Fig. 2b). Notice that an
internal particle starting from x;. € [1/a + ¢, 1] can also
reach the domain ¢ €[0,1 — 1/a].

e o> 2. In the present case, the internal particles are still
located initially at x;. € [1/a, 1] and they can reach both
the domains ¢" e[l — 1/a,1] and &' e[l/a,1 — 1/a]
where the former is the hot zone of the matrix
(Fig. 2c). Also, an internal particle starting from x;. €
[1/o+ &7, 1] can reach the domain ¢* € [0, 1/a] (the cold
zone of the matrix).

Applying Eq. (15) for j =r, the temperature of an internal
element of fluid at the location ¢ and time ¢} may be eval-
uated as

9(ET ) = 9(x; n+ 1/2)e Nl —¢)

ir?

— Nty
et
< / (i) E ) gt 27)

“ir

where the initial temperature ¥’ (x;, n + 1/2) may be calcu-
lated making use of the cyclic operation of the regenerator,
that is, 9. (xj-,n 4+ 1/2) = ¥.(x},n — 1/2). Then, following a
procedure similar to the one applied to the blow period in
the previous subsection and solving the above equation for

9L (x5,n+ 1/2), we have

i)

P (xtn+1/2) = wm { / u(x NTU(

ir

+elut q dx+} (28)

where x;. depends on the time 7" in the form of Eq. (14) for
j=r. Notice that the time and space intervals where Eq.
(27), along with the companion Eq. (28), may be used de-
pend strictly on the value of «, as it will be described in Sec-
tion 7.

7. Fluid temperature solution

As the matrix temperature 9,(¢7) may be evaluated
approximately through Eq. (17), Egs. (18), (23) and (24)
concerning blow period allow 95(¢"), ¥1(¢%,tf) and
9,(E7, 7)) to be definitely evaluated. Similarly, Egs. (20),
(21) and (27) regarding reverse period allow 19’:(6*,1;),
9"(ET) and ¥(¢T, ) to be calculated as well. Thus, solving
the integrals on the RHS of the equations stated before, we
have

P(E ) = Nty £ 1 —1-sign(u;)
I Ny +2 Nty +2
207 sign(u;) es;;/:(g (x-¢)
Nty +2
(j=b,rand p = h,i k) (29)
where 9"—9”—0 O=0=1 and 0, =0 =[1+

exp(—NTU/ )] (Notlce the exponential dependence of
the fluid temperature on the time.) The time and space
intervals (including the values of o) where Eq. (29) may
be used are summarised in Table 1. A flow chart illustrating
the different calculation procedures named in this table is
given in Fig. 3 for both the blow (a) and reverse (b) periods.
For any space &' and time ‘rj* location, it enables the type
of gas particle (i, k for o < 1, and k, i, i for o > 1) within the
regenerator to be established in order to appropriately cal-
culate its initial location x; and, hence, the fluid
temperature.

Fig. 4 shows the fluid temperature for Nty =1 and
o= 5/3 as a function of &" with ‘cj+ (j= b,r) as a parameter
for both the blow (a) and reverse (b) periods. The matrix
temperature (time-independent) is plotted in the same dia-
grams and its cold and hot zones depending on o« are
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Table 1
Cyclic operation of the regenerator. Time and space intervals for the fluid temperatures as a function of o
Blow period (1 € [n,n+ 1/2)) Reverse period (1) € [n+1/2,n+ 1])
o & 7 9y o &t 9,
a<1 [0,1] [, 7, IET, ) a<1 [0,1] [ 1/2,7),) IR (ET )
[t +1/2] Ih(EN) [e5y,n+ 1] (e
1<a<g?2 [0,1 — 1/a] [n, 7] 9 (ET ) 1<a<?2 [0,1 — 1/o] [n+1/2,7)] I(ET, )
[thoon +1/2] 05(¢") [t n+1] 0(& )
(1 — 1/2,1/a] [, 7] &) [1—1/2,1/2] n+1/2,7)] 9E(ET T
[Th.1: Th2l 0, 7) 71,7 D7, 1))
[thorn +1/2] 05(¢") [t n+1] 9 (EY)
[1/21] In, ] I ) [1/2,1] n+1/2,75,) 9 1)
[th1:m+1/2] (&) [t2,m +1] 9}(Eh)
o>2 [0,1/x] [n, 75 9 (ET, 1)) a>2 [0,1/«] [n+1/2,7)] IR (ET T
[ty +1/2] 9 (ED) [ch,n+1] V(e )
[1/o,1 — 1/a] [n,n+ 1/2] P (ET, 7)) [1/o,1 — 1/a] n+1/2,n+1] I(ET )
[1—1/a,1] [n, 7] IHET ) [1—1/a,1] [n+1/2,7),) G(ET )
[th1:n+1/2] 0, (&7, 73) [t n+1] 9(E")
Ty=n+(1—a)/2+ /2 T, =n+&a/2 Th=n+1-C0/2 Th=n+1/2+(1-Ea/2

pointed out. Notice that, when the gas flows from the cold
space to the hot one (blow period), the fluid temperature is
not continuous at the points (&7, ) which satisfy the times
t,, and 7,, given in Table 1. For example, when o = 5/3
and 7:,, =n+ 1/6 (second plot in Fig. 4a) the gas temper-
ature is discontinuous at ¢ = 0.2 and ¢ = 0.6, and so on.
This discontinuity is due to the proposed analytical treat-
ment which deals with the boundary condition (8.2). In
fact, in order that this boundary condition can really occur,
the dimensionless temperature of the gas exiting the matrix
at its right-hand side (x™ =1) during the blow period
(t; € [ln,n+1/2]) and entering the hot space has to
approach suddenly the unity. The sudden variation of tem-
perature causes the above discontinuity. Similarly, during
the reverse period, the fluid temperature is not continuous
at the points (¢*,7,) which satisfy the times 7, and 7,
given again in Table 1. The cyclic propagation of tempera-
ture discontinuities can more revealingly be portrayed in
contour plots and pseudo-three-dimensional temperature
reliefs, as it is done in Fig. 5 for Nyy =1 and « = 10/3.
In this case, when 77 = 5/6 at the nth cycle, the gas temper-
ature is discontinuous at £+ =0.1 and ¢" = 0.8. This dis-
continuity is due to the boundary condition (8.1). In fact,
in order that this boundary condition can really occur,
the dimensionless temperature of the gas exiting the matrix
at its left-hand side (x™ =0) during the reverse period
(t7 € [n+1/2,n+1]) and entering the cold space has to
become abruptly equal to zero. This abrupt variation
causes the above temperature discontinuity. These discon-
tinuities are in agreement with Organ’s findings. In fact,
using the simplification of incompressibility, Organ [28]
demonstrated that one-dimensional, cyclically reversing
flow in a duct is inevitably accompanied by discontinuities
in the lengthwise distribution of temperature.

Fig. 4 also shows that, at a prescribed time 7, during the
blow period, the matrix does in general not give up heat to
the gas at all the locations ¢ within the regenerator. As an
example, when o =5/3 and 1/ =n+ 1/6 (second plot in
Fig. 4a), the matrix temperature is higher than the fluid
temperature for only ¢* €[0,0.2]. This indicates that the
heat is transferred from the fluid to the matrix for
¢t €[0.2,1] at the time 7} = n+ 1/6 even though the gas
at that time is flowing from the cold space to the hot
one. All this is due to the phenomenon of the flush phase
occurring only in rapidly switched heat regenerators. Sim-
ilar considerations may be done for the reverse period.

8. Effectiveness and heat stored in the regenerator

The regenerator effectiveness ¢ may be defined as the

ratio of the heat actually exchanged to an ideal amount
of heat which would be exchanged if the temperature of
the cold gas could be increased to the entrance temperature
of the hot gas [2, chapter 35]. Therefore, we have
Ty(E=L)—Tr <, .
S e G (30)
where 9, (£" = 1) is the time-average dimensionless temper-
ature of the fluid over the blow period at the hot end of the
regenerator (¢7 = 1). Bearing in mind the time and space
intervals of Table 1, Eq. (30) has to be split into two cases.
Thus, we have

[l e =1, 1 )de

e=2-0 +[TO(E = Ddt), a<] (31)
f"+1/2 O(E =1,70)dt), a>1
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Fig. 3. Flow chart for the fluid temperature calculation. (a) Blow period; (b) reverse period.

Substituting Eq. (29) in Eq. (31), we obtain the effectiveness
in an exact closed-form as a function of the flush ratio «
and the number of transfer units Nty, that is

NTU 20
= +
Ntu+2 Ntu(Ntu +2)
{(l—e‘NTU), a1
(1—eNu/x) o> 1

8(]VTU7 O()
(32)

The first term on the RHS of Eq. (32) is the well-known
effectiveness ¢,—y deriving from the classical regenerator
theory (Nusselt) and applicable only to slowly switched heat
regenerators in countercurrent. Eq. (32) says that ¢ increases
linearly with o for o < 1. Eq. (32) also states that for o> 1
the effectiveness increases with a but less rapidly than a lin-
ear trend. In fact, for « — oo it approaches the unity which-
ever value is given to Nty. In such a limiting case, however,

only internal gas particles are present within the regenerator
and, consequently, it does not work. Fig. 6 shows the regen-
erator effectiveness as a function of both « and Nty. The ef-
fect of flush ratio on ¢ is considerable when the number of
transfer units is low. This effect however decreases when
Nty increases. It may also be noted that the effectiveness
is a monotonically increasing function with Nty for low
values of «. Contrary, for values of o« approximately greater
than 0.7, the effectiveness presents a trade-off in Nty (in
particular, a minimum value). For the limiting case « =1,
the mass of gas contained in the regenerator is equal to that
passing through it in one blow period.

Once the efficiency is known, the so-called ‘regenerator
losses’ due to imperfect heat transfer from gas to matrix
and vice versa may be taken as (1 —¢)Q, where O is
the dimensionless heat stored in the regenerator during
each blow. It is given by
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4 and (b) o =1/2.

(33)

V/r, is the matrix wetted area. Solving the

above integral and using Eq. (32) give

n

where PL
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[18, p. 569], we have Nty = 130 and o = 1.45 which pro-
vide an efficiency of about 0.985 and O = 0.0037 (= a
regenerator loss of 310 W).

It follows from the above comparison that Egs. (32) and
(34) may in every respect be used in an initial stage of the
regenerator design, without the need of numerical compu-
tations. On the other hand, it must be pointed out that high
temperature recovery cannot be the sole design criterion, as
its increase with increasing Nty goes always with a corre-
sponding increase in pumping losses along the regenerator.
The optimum Nty value should not therefore be as high as
possible (to maximize ¢), but the best compromise between
thermal performance and pumping losses, as indicated by
Organ [5,18, chapters 16 and 17].

9. Conclusions

This article outlines the methodology for analytically
solving the 1D governing equations of rapidly switched
heat regenerators in counterflow with a uniform gradient
of the matrix temperature. It has been shown that, when
a Lagrange system is used, it is convenient to classify the
gas particles flowing within the regenerator as ‘cold’,
‘hot’ and ‘internal’ particles according to Organ’s concept
of independent flow regimes. Also, the definition of the
so-called cold and hot zones of the matrix gives insight
when the gas energy equation is integrated along the path
of a selected gas particle.

It was found that the phenomenon of the flush phase is
able to affect positively and considerably the heat transfer
performance of a rapidly switched regenerator, especially
when the number of transfer units is low and the flush ratio
is high. In fact, when the blow period (i.e. the heating per-
iod of the fluid) starts, the fluid gives up heat to the matrix,
and only subsequently absorbs heat from it. Similarly,
when the reverse period (i.e. the cooling period of the fluid)
starts, the fluid absorbs heat from the matrix, and only sub-
sequently supplies heat to it. Also, it was found that the
one-dimensional, cyclically reversing flow in a regenerator
is inevitably accompanied by discontinuities in the length-
wise distribution of temperature.

Finally, an easy-to-handle expression for the regenerator
effectiveness as a function of NTU and flush ratio has been
provided. It indicates that in rapid cyclic flow situations
(typical of Stirling regenerators) the effectiveness is under-
estimated by the conventional regenerator theory as it fully
neglects the flush phase. A comparison with numerical
results of Organ’s treatment has shown an excellent agree-
ment, in particular for high values of Nty. The investiga-
tion of the pressure fluctuations remains a subject for
future research.
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